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Abstract

The aim of computer-aided musical orchestration (CAMO) is to find a combination of musical
instrument sounds that perceptually approximates a reference sound when played together. The
complexity of timbre perception and the combinatorial explosion of all possible musical instru-
ment sound combinations make it very challenging to find even one orchestration for a reference
sound. However, finding only one orchestration is seldom enough given the creative nature of
the compositional process. Compositional applications of computer-aided musical orchestration
can greatly benefit from multiple orchestrations with diversity. In this work, we use an artifi-
cial immune system (AIS) called opt-aiNet to search for combinations of musical instrument
sounds that minimize the distance to a reference sound encoded in a fitness function. Opt-aiNet
was developed to maximize diversity in the solution set of multi-modal optimization problems,
which results in multiple alternative orchestrations for the same reference sound that are dif-
ferent among themselves. We compared the diversity and the similarity of the orchestrations
proposed by opt-aiNet (CAMO-AIS) against a standard genetic algorithm (CAMO-GA) and Or-
chids, which is considered the state of the art for CAMO, for 13 reference sounds. In general,
CAMO-AIS outperformed CAMO-GA and Orchids for several measures of objective diversity.
We performed a listening test to evaluate and compare the perceptual similarity of the orchestra-
tions by CAMO-AIS and Orchids. CAMO-AIS generated orchestrations that were perceived to
be as similar to the reference sounds as those returned by Orchids. Therefore, CAMO-AIS has
higher diversity of orchestrations than Orchids without loss of perceptual similarity.
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1. Introduction

Orchestration is understood as “the art of blending instrument timbres together” [1]. Ini-
tially, orchestration was simply the assignment of instruments to pre-composed parts of the score,
which was dictated largely by the availability of resources, such as what instruments and how
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many of each are available in the orchestra [2, 3]. Later on, composers started regarding orches-
tration as an integral part of the compositional process whereby the musical ideas themselves
are expressed [2, 4]. Compositional experimentation in orchestration arises from the increasing
tendency to specify instrument combinations to achieve desired effects, resulting in the contem-
porary use of timbral combinations [5, 4]. Orchestration remains an empirical activity largely
due to the difficulty to formalize the required knowledge [2, 1, 6]. Diversity has been iden-
tified as an important property that can provide the composer with multiple alternatives given
the highly subjective nature of musical orchestration combined with the complexity of timbre
perception [7].

The development of computational tools that aid the composer in exploring the virtually infi-
nite possibilities resulting from the combinations of musical instruments gave rise to computer-
aided musical orchestration (CAMO) [8, 9, 10, 11, 4, 12, 13]. CAMO tools automate the search
for instrument combinations that perceptually approximate a reference timbre commonly repre-
sented by a reference sound [1, 6]. The combinations found are generally included in the score
and later played by orchestras in live performances. However, most CAMO tools allow the com-
poser to preview the result of the combinations found using musical instrument sounds from
pre-recorded databases, which has been deemed an appropriate rendition of the timbre of the
instrument combinations [14].

Early CAMO systems adopted a top-down approach [8, 9, 4] that consists of spectral analysis
and subtractive spectral matching. These works usually keep a database of spectral peaks from
musical instruments that will be used to match the reference spectrum. The algorithm iteratively
subtracts the spectral peaks of the best match from the reference spectrum aiming to minimize
the residual spectral energy in the least squares sense. The iterative procedure requires little
computational power, but the greedy algorithm restricts the exploration of the solution space,
often resulting in suboptimal solutions because it only fits the best match per iteration [7].

The concept of timbre lies at the core of musical orchestration [2, 1, 6, 15, 16] largely be-
cause instrumental combinations can give rise to new timbres if the sounds are perceived as
blended [5, 17]. Yet, the top-down approach neglects the exploration of timbral combinations
by relying on spectral matching, which does not capture the multi-dimensional nature of tim-
bre. Carpentier et al. [10, 11, 18, 12, 13] adopted a bottom-up approach that relies on timbre
similarity and evolutionary computation to search for instrument combinations that approximate
the reference. They use a genetic algorithm (GA) to search for instrument combinations that
optimize a fitness function that encodes timbre similarity with feature vectors.

The bottom-up approach represents a paradigm shift toward generative CAMO [11, 12, 19,
20], where the timbre of instrument combinations is compared with the timbre of the reference
sound. This approach requires a model of timbre perception to describe the timbre of isolated
sounds, a method to estimate the timbral result of an instrument combination, and a measure
of timbre similarity to compare the combinations and the reference. Timbre spaces [21, 22, 23,
24, 5] yield features that correlate with dimensions of timbre perception. Models of timbral
combination [2, 13, 17] estimate these features for combinations of musical instrument sounds.
Timbre similarity can be estimated as distances in timbre spaces [5], which are calculated as
weighed distances between feature vectors [12].

CAMO systems that return only one orchestration seldom meet the requirements of the highly
subjective and creative nature of music composition [7]. Often, the composer uses CAMO tools
to explore the problem space and find instrument combinations that would be missed by the
empirical methods found in traditional orchestration manuals [1, 6]. The reference sound guides
the search toward interesting regions of the search space and the weights fine-tune the relative
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Input sound to CAMO-AIS: Air Horn Example orchestrations

Trumpet-C/ordinario/A#3            
Trumpet-C-straight/flatterzunge /F#4 
Violin/note-lasting/B3            
Violoncello/behind-the-bridge/No note  
Violoncello-sordina/ordinario/E5    

Trumpet-C/brassy/D#4
Contrabass/sul-ponticello/F#4
Violoncello/ordinario/A#4
Violoncello/sul-ponticello/G#4
Violoncello-sordina/ordinario/G#5

The multiple solutions 
provided by the AIS 
lead to orchestrations 
with high fitness and 
high diversity

Figure 1: Illustration of multi-modal function optimization in CAMO. The figure shows an objective function with
multiple optima. The black dots represent multiple orchestrations returned by CAMO-AIS. Two example orchestrations
for the reference sound air horn are given following the convention instrument/playing technique/note.

importance of perceptual dimensions of timbre similarity encoded in the fitness function [1, 6].
Diversity of orchestrations is important in CAMO [7] to allow the exploration of different musical
ideas. This work focuses on CAMO algorithms that return multiple orchestrations in parallel as
the strategy to address the intrinsic need for diversity in CAMO.

There are two current CAMO systems that return multiple orchestrations in parallel, Or-
chids [12] which uses multi-objective optimization (MOO) and our approach [20] called CAMO-
AIS, which uses multi-modal single-objective optimization (SOO). In Orchids, Carpentier et
al. [12] use the well-known multi-objective genetic local search (MOGLS) optimization algo-
rithm [25] to tackle diversity by approximating the Pareto frontier. Each point on the theoretical
Pareto frontier corresponds to an optimal solution for a specific combination of objectives in
the fitness function given by the weight vector. Consequently, Orchids returns multiple orches-
trations that approximate the reference sound differently because the weights emphasize timbre
dimensions differently. Orchids prioritizes the objective similarity of Pareto optimal orchestra-
tions over the perceptual similarity controlled by the weights.

In this work, we propose to use CAMO-AIS to optimize a single-objective fitness function
with a multi-modal artificial immune system (AIS) called opt-aiNet [26]. The single-objective
fitness function uses a fixed set of weights to combine the features, restricting the search to or-
chestrations that have the same relative importance of perceptual dimensions of timbre similarity.
The multi-modal ability of opt-aiNet is illustrated in Fig. 1, where the fitness function is repre-
sented by the surface and the optima are the peaks. Opt-aiNet is capable of returning multiple
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solutions (i.e., orchestrations) in parallel, represented by the black dots, that correspond to local
optima of the fitness function. These multiple orchestrations approach the reference similarly
because they correspond to the same combination of weights, yet they are different among them-
selves because each is a unique instrument combination. However, the quality of local optima
of this single-objective fitness function is always inferior to the global optimum, which would
be closest to the reference according to the fitness value. Consequently, CAMO-AIS trades off

the objective similarity given by the fitness function for perceptual similarity controlled by the
weights. The contribution of this work lies in the diversity of orchestrations returned by CAMO-
AIS resulting from the multi-modal ability of opt-aiNet.

The remainder of this paper is organized as follows. Section 2 reviews the literature of
CAMO. Section 3 discusses theoretical aspects of the diversity strategies used by Orchids and
CAMO-AIS. Section 4 presents an overview of our approach to CAMO. Next, Section 5 presents
the experiment we performed followed by the evaluation of the results. The evaluation comprises
similarity and diversity using objective measures and the subjective ratings from a listening test.
Then, Section 6 presents the results, followed by a discussion in Section 7. Finally, Section 8
presents the conclusions and perspectives.

2. State of the Art of Computer-Aided Musical Orchestration

Psenicka [8] describes SPORCH (SPectral ORCHestration) as “a program designed to an-
alyze a recorded sound and output a list of instruments, pitches, and dynamic levels that when
played together create a sonority whose timbre and quality approximate that of the analyzed
sound.” SPORCH keeps a database of spectral peaks of musical instrument and uses subtractive
spectral matching and least squares to return one orchestration per run. Hummel [9] approxi-
mates the spectral envelope of phonemes as a combination of the spectral envelopes of musical
instrument sounds. The method also uses a greedy iterative spectral subtraction procedure. The
spectral peaks are not considered when computing the similarity between reference and candidate
sounds, disregarding pitch among other perceptual qualities. Rose and Hetrik [4] use singular
value decomposition (SVD) to perform spectral decomposition and spectral matching. SVD de-
composes the reference spectrum as a weighted sum of the instruments present in the database,
where the weights reflect the match. Besides the drawbacks from the previous approaches, SVD
can be computationally intensive even for relatively small databases. Additionally, SVD some-
times returns combinations that are unplayable such as multiple simultaneous notes on the same
violin, requiring an additional procedure to specify constraints on the database that reflect the
physical constraints of musical instruments and of the orchestra.

Carpentier et al. [10, 11, 12, 13] consider the search for combinations of musical instrument
sounds as a constrained combinatorial optimization problem. They formulate CAMO as a binary
allocation knapsack problem where the aim is to find a combination of musical instruments that
maximizes the timbral similarity with the reference constrained by the capacity of the orches-
tra (i.e., the database). However, the binary allocation knapsack problem cannot be solved in
polynomial time because it was proved to be NP-complete [27]. They explore the vast space of
possible instrument combinations with a genetic algorithm (GA) that optimizes a fitness func-
tion which encodes timbral similarity between the candidate instrument combinations and the
reference sound. They use MOGLS [25] to return multiple instrument combinations in parallel
that are nearly Pareto optimal. Later, Esling et al. [19] added the ability to perform dynamic
orchestrations by representing the temporal variation of timbral features.
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Recently, Antoine et al. [28, 15, 29, 30] proposed to use supervised classification to generate
orchestrations from semantic descriptors of timbre. Currently, i-Berlioz [30] uses support vector
machines (SVM) to generate instrumental combinations that would match one of the five sup-
ported semantic descriptors of timbre, namely breathiness, brightness, dullness, roughness, and
warmth. Antoine et al. have chosen to use semantic descriptors of timbre to enable the composer
to focus on a more specific sound quality [30] by restricting the number of orchestrations re-
turned by i-Berlioz. Therefore, i-Berlioz is conceived to minimize the diversity of orchestrations
returned under the assumption that the five semantic terms unequivocally describe the timbre of
the result. However, most research on timbre perception suggests otherwise [5]. In CAMO, this
redundancy in the description of timbre translates as multiple instrument combinations approxi-
mating the reference timbral description (with varying degrees of similarity). This work focuses
on the diversity of orchestrations as aesthetic alternatives for the composer.

In a previous work [20], we adapted an artificial immune system (AIS) called opt-aiNet [26]
to return multiple combinations of musical instrument sounds whose timbral features approx-
imate those of a reference sound. The sound database used contained 1439 sounds from the
RWC Musical Instrument Sound Database [31, 32] selected from 13 instruments played with 3
dynamics. We compared the results with multiple runs of a standard GA (CAMO-GA) using 10
reference sounds.

In this work, we compare the diversity of orchestrations returned by CAMO-AIS against
CAMO-GA and Orchids, the state of the art of CAMO using four different musical instru-
ment sound databases (see Section 4.3). We orchestrated 13 reference sounds with CAMO-
GA, CAMO-AIS, and Orchids under the same conditions (whenever comparable) and then we
compared the diversity of the orchestrations using multiple objective measures. Finally, we per-
formed a listening test to evaluate the perceptual similarity of the orchestrations returned by
CAMO-AIS and Orchids.

3. Diversity Strategies in Computer-Aided Musical Orchestration

Diversity is very important in CAMO given the creative nature of the compositional process.
The composer is rarely interested in a single combination (i.e., an orchestration) that optimizes
some objective measure(s) with a reference sound [7]. Instead, the reference sound is typically
used to guide the search towards a region of interest in the vast space of timbral combinations.
Very often, the composer will use subjective criteria not encoded in the objective measure(s)
guiding the search to choose one or more orchestrations of interest. Therefore, a CAMO algo-
rithm should be capable of returning several orchestrations that are all similar to the reference
sound yet dissimilar among themselves, representing different alternative orchestrations for that
reference sound. In that case, diversity provides the composer with multiple choices when or-
chestrating a reference sound, expanding the creative possibilities of CAMO beyond what the
composer initially imagined. In this work, we are especially interested in comparing the ability
of CAMO-AIS, CAMO-GA, and Orchids to generate diverse orchestrations.

3.1. Multi-Objective versus Multi-Modal Single-Objective Optimization

Carpentier et al. [12] propose to use a multi-objective optimization strategy to tackle di-
versity. The objective similarity with the reference sound is encoded as multiple independent
single-objective distance measures D (see Section 4.7 for further details) which are combined
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with weight vectors ~α as
~E j = ~α jD j, with

∑
j

|α j| = 1, (1)

where j is the index of dimensions of the feature space, ~α j are the vector components of ~α with
magnitude |α j|. Carpentier et al. [12] use MOGLS to find efficient solutions [25] that correspond
to different combinations of the weights ~α that maximize diversity along the Pareto front.

We propose to approach the problem as single-objective and use the multi-modal optimiza-
tion ability of opt-aiNet to find multiple local optima that maximize diversity in the feature space.
Therefore, in CAMO-AIS, opt-aiNet minimizes the following distance (fitness) function

F =
∑

j

|α j|D j, with
∑

j

|α j| = 1. (2)

3.2. Maintenance of Diversity in opt-aiNet

The multi-modal ability of opt-aiNet emerges from the property of maintenance of diversity,
which allows opt-aiNet to return multiple local optima of the fitness function being optimized
upon convergence. Figure 1 shows a multi-modal function with multiple global and local optima
represented by the multiple peaks. Standard optimization methods commonly only return one
solution (i.e., one black dot) corresponding to one local optimum of the fitness function. The
property of maintenance of diversity in opt-aiNet translates as multiple solutions returned in
parallel, corresponding to several local optima of the fitness function. Two different measures
are involved in the property of maintenance of diversity in opt-aiNet, namely the fitness function
and the affinity measure. Fitness is a measure of the quality of a candidate solution and is used
to explore promising regions of the search space. Affinity is a measure of distance between the
current solutions and is used to eliminate candidate solutions with lower fitness that are close to
high fitness solutions.

At each iteration, opt-aiNet uses the immunological principles of clonal expansion, mutation,
and suppression to evolve a population of candidate solutions in an immune network. Clonal
expansion and mutation expand the size of the pool of candidate solutions during the exploration
of regions of the search space associated with high fitness. Then, suppression cuts back down the
current population by keeping only the best solutions in regions within a radius ρ. Maintenance
of diversity is achieved by eliminating the antibodies whose affinity is lower than ρ from the
network while keeping the ones with the highest fitness. The result is illustrated in Figure 1,
where only the best individual per peak of the fitness function is returned.

Similarity with the reference is measured with the fitness function of eq. (2), while affinity
is measured as Euclidean distances between candidate orchestrations in the feature space (see
Section 4.8). Both the fitness function and the affinity measure use the features described in
Section 4.4, which, in turn, capture perceptual aspects of the sounds. Consequently, fitness F
is inversely proportional to perceptual similarity of orchestrations with the reference sound and
affinity is proportional to perceptual dissimilarity between orchestrations. Therefore, in CAMO-
AIS, maintenance of diversity translates as orchestrations that are all similar to the reference yet
different from one another.

3.3. Diversity in Orchids and in CAMO-AIS

Figure 2 illustrates the different diversity strategies between Orchids and CAMO-AIS. Fig-
ure 2 shows the search space (also called decision space in the multi-objective optimization
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Figure 2: Illustration of the different spaces in CAMO. The left-hand panel shows the search space, the middle panel
shows the feature space, and the right-hand panel shows the objective space. Each point in the decision space is an
instrument combination (orchestration) that has a corresponding position in the feature space. The reference sound can
also be seen in the feature space. The distances D between points in the feature space and the reference sound are
calculated in the feature space. Weight vectors ~α map points in the feature space to the objective space.

literature), the feature space, and the objective space. Each point in the search space is an or-
chestration represented as an instrument combination that has a corresponding position in the
feature space. The features encode perceptual aspects of the sounds and are used in the single-
objective distances D between the orchestrations and the reference sound. Weight vectors ~α map
points in the feature space to points in the objective space. The same point in the feature space
can be mapped to different points in the objective space by different weight vectors ~α. On the
other hand, a fixed weight vector ~α always maps points in the feature space to a straight line in
the objective space. Thus ~α can be interpreted as specifying the direction by which a solution
approaches the theoretical optimum at the origin of the objective space.

The right-hand panel in Figure 2 shows the Pareto front with non-dominated solutions (ND)
illustrated as “X” and dominated solutions (D) illustrated as “+”. The locus of the fitness function
in the objective space can also be seen as a straight line containing the global optimum (G)
illustrated as the filled “O” and the local optima (L) illustrated as the empty “O”. Note that
dominated solutions D can coincide with local optima L and, in turn, non-dominated solutions
ND can coincide with the global optimum G. Thus CAMO-AIS returns solutions L that were
discarded by MOGLS because there is a solution G closer to the reference in the same direction in
the objective space (i.e., specified by the same |α j|). MOGLS provides a set of efficient solutions
that approach the reference sound in different directions. Perceptually, each solution returned
by MOGLS would be closer to the reference sound according to different criteria emphasized
by the different weight vectors ~α. On the other hand, CAMO-AIS returns solutions that always
approach the reference in the same direction, emphasizing the same perceptual similarities. The
trade-off is that the quality of the solutions decreases when they are local optima L. In this article,
we investigate the consequences of these different approaches to CAMO in terms of similarity
and diversity. We aim to show that CAMO-AIS returns orchestrations with higher diversity than
Orchids without loss of perceptual similarity with the reference.
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Figure 3: Overview of CAMO. The figure illustrates the different components of the CAMO approach adopted.

4. Computer-Aided Musical Orchestration with an Artificial Immune System (CAMO-
AIS)

4.1. Overview

Figure 3 shows an overview of CAMO-AIS. The sound database is used to build a feature
database, which consists of acoustic features calculated for all sounds prior to the search for
orchestrations. The same features are calculated for the reference sound being orchestrated. The
combination functions estimate the features of a sound combination from the features of the
individual sounds. The evaluation function uses these features to estimate the similarity between
combinations of features from sounds in the database and those of the reference sound. The
search algorithm opt-aiNet is used to search for combinations that approximate the reference
sound, called orchestrations.

4.2. Representation

Figure 4a illustrates an orchestration as a combination of sounds from the sound database that
approximates the reference sound when played together. Figure 4b shows the representation used
by CAMO-AIS, in which an orchestration has M players p (m), and each player is allocated a
sound s (n) ∈ S , where n = [1, . . . ,N] is the index in the database S , which has N sounds in total.
Thus an orchestration is a combination of sounds c (m, n) = {s1 (n) , . . . , sM (n)}, ∀ sm (n) ∈ S .
Figure 4b shows c (m, n) represented as a list, but the order of players p (m) does not matter for
the orchestration. Each sound sm (n) corresponds to a specific note of a given instrument played
with a dynamic level, and sm (n) = 0 indicates that player p (m) was allocated no instrument.

4.2.1. Discrete Search Space
Originally, opt-aiNet [26] was designed to optimize functions of continuous variables, per-

forming the search in continuous vector spaces. In our work, the search space is discrete because
the representation of orchestrations c (m, n) is a vector of discrete indices n of sounds in the
database, as shown in Figure 4b. Most of the operations of the continuous version of opt-aiNet
work for discrete vectors as well. The exception is the original mutation operator which used a
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(b) Representation.

Figure 4: Representation of orchestrations. Part (a) illustrates the orchestration as a combination of sounds that approxi-
mates the reference. Part (b) shows the internal representation of each orchestration in CAMO-AIS.

continuous random variable to add a small perturbation to the vectors being mutated. Thus we
adapted the mutation operator for discrete vectors using a probability of mutation to determine if
the vector will undergo mutation. The probability of mutation χ is calculated as

χ = exp(−γF̂) (3)

where γ is a constant and F̂ is the normalized fitness value of the combination vector c (m, n)
being mutated. For each index n, a uniform random variable u (0, 1) will determine if the corre-
sponding sound s (n) is replaced by another sound from S . If u (0, 1) < χ then a new s (n) ∈ S
is chosen from another uniform distribution u (1,N), where n ∈ N and n ≤ N. Following our
previous work [20], we set γ = 1.2.

4.3. Musical Instrument Sound Databases

This work uses four musical instrument sound databases, namely Studio Online (SOL) 1,
Real World Computing (RWC) 2, Philharmonia 3, and Iowa 4. All the experiments reported
in Sec. 6 used all four sound databases above for all the orchestrations algorithms, except for
Orchids, which uses SOL by default and it cannot be replaced.

SOL comes bundled with Orchids with a total of 24, 320 sounds from 33 instruments from
5 families, namely brass, keyboards, plucked strings, strings, and woodwinds. SOL has sounds
played with over 550 classical, experimental, and extended articulations and playing techniques
as well as 6 dynamics, pianissimo, piano, mezzo piano, mezzo forte, forte and fortissimo.

RWC music database contains a total of 37, 372 sounds from 36 instruments from 5 fami-
lies, namely brass, keyboard, popular, strings, and woodwinds. For each instrument, RWC has

1https://www.uvi.net/ircam-solo-instruments.html
2https://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-i.html
3https://www.philharmonia.co.uk/explore/sound_samples
4http://theremin.music.uiowa.edu/MIS.html
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sounds played with 3 dynamics (pianissimo, mezzo forte, and fortissimo) and different playing
techniques. RWC provides up to 3 variations for each instrument, where each variation corre-
sponds to a different instrument manufacturer and a different musician.

Philharmonia has a total of 13, 680 sounds from 58 instruments from 5 families, namely
brass, percussion, plucked strings, strings, and woodwinds. Philharmonia has sounds played with
3 dynamics (pianissimo, mezzo forte, and fortissimo) and a total of 73 extended articulations and
playing techniques.

Iowa has a total of 4, 483 sounds from 19 instruments from 3 families, namely brass, strings,
and woodwinds. In Iowa, each instrument sound was played pianissimo, mezzo forte, and for-
tissimo for all the notes comprising the entire instrumental range. For stringed instruments, the
total range of sounds was recorded for each string.

4.4. Feature Extraction

Traditionally, timbre is considered as the set of attributes whereby a listener can judge that
two sounds are dissimilar using any criteria other than pitch, loudness, or duration [5]. Therefore,
we consider pitch, loudness, and duration separately from timbre dimensions. The features used
are fundamental frequency f0 (pitch), frequency f and amplitude a of the contribution spectral
peaks A, loudness λ, spectral centroid µ, and spectral spread σ. The fundamental frequency f0
of all sounds s (n) in the database is estimated with Swipe [33]. The spectral centroid µ cap-
tures brightness while the spectral spread σ correlates with the third dimension of MDS timbre
spaces [21, 22, 23, 24]. All the features are calculated over short-term frames (see window size
in Table 1) and averaged across all frames. Orchids uses the same features calculated similarly.

4.4.1. Contribution Spectral Peaks
The spectral energy that sound s (m) contributes to an orchestration is determined by the

contribution spectral peaks vector ~Am (k). In what follows, only peaks whose spectral energy
(amplitude squared) is at most 35 dB below the maximum level (i.e., 0 dB) are used and all other
peaks are discarded. These peaks are stored as a vector with the pairs {a (k) , f (k)} for each sound
s (m), where k is the index of the peak. The contribution spectral peaks ~Am (k) are the spectral
peaks from the candidate sound s (m) that are common to the spectral peaks of the reference
sound r. Eq. (4) shows the calculation of ~Am (k) as

~Am (k) =

as (k) if (1 + δ)−1 ≤ fs (k) / fr (k) ≤ 1 + δ

0 otherwise
(4)

where as (k) is the amplitude and fs (k) is the frequency of the spectral peak of the candidate
sound, and fr (k) is the frequency of the reference sound.

Figure 5 illustrates the computation of spectral peak similarity between the reference sound
and a candidate sound. Spectral peaks are represented as spikes with amplitude a (k) at frequency
f (k). The frequencies fr (k) of the peaks of the reference sound are used as reference. Whenever
the candidate sound contains a peak in a region δ around fr (k), the amplitude a (k) of the peak
at frequency fs (k) of the candidate sound is kept at position k of the contribution spectral peaks
vector ~Am (k). Following our previous work [20], we set δ = 0.025.
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4.4.2. Loudness
Loudness λ is calculated as

λ = 20 log10

∑
k

a (k)

 , (5)

where a (k) are the amplitudes at frequencies f (k).

4.4.3. Spectral Centroid
The spectral centroid µ is calculated as

µ =
∑

k

f (k)
|a (k) |2∑
k |a (k) |2

. (6)

4.4.4. Spectral Spread
The spectral spread σ is calculated as

σ =
∑

k

( f (k) − µ)2 |a (k) |2∑
k |a (k) |2

. (7)

4.5. Pre-Processing

Prior to the search for orchestrations of a given reference sound r, the entire sound database
S is reduced to a subset S r of sounds that will be effectively used to orchestrate r. All the sounds
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whose contribution spectral peaks vector ~Am (k) is all zeros are eliminated because these do not
contribute spectral energy to the orchestration. Similarly, all the sounds whose f0 is lower than
f r
0 are eliminated because these add spectral energy outside of the region of interest and have

a negative impact on the final result. Partials with frequencies higher than all frequencies in r
are disconsidered because these are in the high-frequency range and typically have negligible
spectral energy.

4.6. Combination Functions

The sounds s (m, n) in an orchestration c (m, n) should approximate the reference r when
played together. Therefore, the combination functions estimate the values of the spectral fea-
tures of c (m, n) from the features of the isolated sounds s (m, n) normalized by the RMS energy
e (m, n) [13]. The combination functions for the spectral centroid µ, spectral spread σ, and loud-
ness λ are given respectively by

µc =

M∑
m

e (m) µ (m)

M∑
m

e (m)
, (8)

σc =

√√√√√√√√√√√ M∑
m

e (m)
(
σ2 (m) + µ2 (m)

)
M∑
m

e (m)
− µ2

c , (9)

λc = 20 log10

 M∑
m

1
K

K∑
k

a (m, k)

 . (10)

The estimation of the contribution spectral peaks of the combination ~Ac uses the contribution
vectors ~As of the sounds s (m, n) in c (m, n) as

~Ar =

{
max
k∈K

[
~A (m, 1)

]
,max

k∈K

[
~A (m, 2)

]
, · · · ,max

k∈K

[
~A (m,N)

]}
. (11)

Orchids uses the same combination functions [12, 13].

4.7. Distance Functions

Each distance D j in eq. (2) measures the difference between the features from the reference
sound r and the candidate orchestration cq (m, n), where q is the index of the orchestration among
all the candidates for r, as follows

Dµ =
|µ

(
cq

)
− µ (r) |

µ (r)
, (12)

Dσ =
|σ

(
cq

)
− σ (r) |

σ (r)
, (13)

Dλ =
|λ

(
cq

)
− λ (r) |

λ (r)
. (14)
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The distance between the contribution vector of the reference sound ~Ar and the contribution
vector of the orchestration ~Ac is calculated as

D~A = 1 − cos
(
~Ar, ~Ac

)
. (15)

Orchids uses the same distance functions [12, 13].
Ultimately, the weights in CAMO-AIS are an aesthetic choice by the composer to determine

the perceptual direction from which all the orchestrations should approximate the reference.
In Orchids, each solution corresponds to a different set of weights, so the composer implicitly
chooses a different perceptual direction by selecting an orchestration among the pool of solutions
returned. In CAMO-AIS, the weights allow the composer to interactively explore the vast space
of compositional possibilities and still have multiple orchestrations to choose from. The weights
used in this work are α~A = 0.6, αλ = 0.2, αµ = 0.1, and ασ = 0.1. These weights were validated
in informal experiments with composers.

4.8. Affinity Measure for Suppression

Suppression discards candidate orchestrations that have affinity below a given threshold ρ.
The affinity between two candidate orchestrations cq and cu is the Euclidean distance

ω (q, u) =

√√√ J=4∑
j=1

(
cq ( j) − cu ( j)

)2
, (16)

where c (1) = f0, c (2) = λ, c (3) = µ, and c (4) = σ are the dimensions of the reduced feature
space where suppression operates. Following our previous work [20], the suppression threshold
used is ρ = 0.01.

5. Evaluation

The quality of an orchestration depends on how similar it is to the reference sound [7]. Ide-
ally, all orchestrations found should be as similar to the reference sound as possible. However,
diversity is also important. Multiple solutions should be different from one another to represent
alternatives, giving the composer options to choose from. Therefore, we evaluate the similarity
and the diversity of the orchestrations generated by CAMO-AIS and compare with CAMO-GA
and Orchids. We use objective and perceptual measures in the evaluation. Both CAMO-GA
and CAMO-AIS use the same representation and optimize the fitness function F of eq. (2) with
the same weight values and equivalent parameters, whereas Orchids uses MOGLS to optimize
eq. (1). Loss of diversity in standard GAs commonly results in many individuals converging to
the same local optimum, whereas opt-aiNet returns multiple local optima. First we will compare
the diversity of the orchestrations with several different objective measures. The aim is twofold,
to compare the multi-modal ability of opt-aiNet (CAMO-AIS) against the standard GA (CAMO-
GA) when optimizing F and to compare the approaches behind Orchids (MOO) and CAMO-AIS
(multi-modal SOO). Finally, we will compare the perceptual similarity of the orchestrations by
CAMO-AIS and Orchids.

The experiment consisted in orchestrating R = 13 reference sounds with CAMO-GA, CAMO-
AIS, and Orchids using the subset of the sound databases Ŝ described in Section 5.2. All ref-
erence sounds were orchestrated using the static mode in Orchids, which corresponds to the
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Figure 6: Reference sounds in MDS representation of feature space.

description found in [12]. We selected Q = 8 orchestrations for each reference generated by all
methods, resulting in a total of 24 orchestrations per reference. CAMO-AIS returns the orches-
trations ordered by fitness value, from lowest F to highest (or from closest to the reference to the
farthest according to F) so we simply use the first Q = 8. In Orchids, however, there is no natural
ordering of the solutions because all the solutions returned correspond to the best solution found
for a particular weight vector ~α. The orchestrations proposed by Orchids are ordered according
to their position index in the population, so we simply selected the first Q = 8. CAMO-GA uses a
standard GA with uniform crossover with 0.7 probability, uniform mutation with 0.2 probability,
roulette wheel selection, and elitism (top 5% individuals). Similarly to CAMO-AIS, CAMO-GA
returns orchestrations ordered by fitness value, so we retrieve the first Q = 8 orchestrations. Sec-
tion 5.1 explains the reference sounds, section 5.2 details the subset Ŝ of the sound databases
used in the experiment, and section 5.3 lists the parameters of the experiment.

5.1. Static and Nearly Harmonic Reference Sounds

All methods are used to generate static orchestrations with nearly harmonic musical instru-
ment sounds. The term static orchestrations emphasizes that the features are averaged across
the duration of the sounds so the feature vectors do not contain information about the tempo-
ral variation of these features during the course of the sounds. Nearly harmonic means that the
spectrum of the musical instruments used contains partials with frequencies nearly harmonically
related. Therefore, we used both static and nearly harmonic as criteria to select appropriate
reference sounds. We chose sounds that present relatively little temporal variation and some de-
gree of harmonicity, such as sirens and notes from instruments not found in the orchestra (e.g.,
synthesizers).

It is also important to choose reference sounds that are distributed relatively evenly in the fea-
ture space so these do not concentrate around one particular region and pose different challenges
to orchestrate. Figure 6 illustrates the distribution of the reference sounds in the reduced feature
space (see Section 4.8). To visualize the relative distribution of the reference sounds, Figure 6
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Table 1: Parameters of the experiment.

Orchestration Algorithms

Parameter CAMO-AIS CAMO-GA Orchids

Maximum Number of Players 5 5 5

Number of Iterations 500 500 500

Initial size of population 50 50 50

Maximum size of population Auto 200 200

Mating pool size — 200 200

Number of Clones 20 — —

Sound Analysis

Parameter CAMO-AIS CAMO-GA Orchids

Window Type Hamming Hamming Hamming

Window Size (ms) 46.4 46.4 60

Hop Size (ms) 23.2 23.2 10

FFT Size 4096 4096 4096

Maximum Number of Partials 25 25 25

was obtained with classic MDS [34] analysis of the feature vectors with dimensions f0, µ, σ, and
λ calculated from the reference sounds.

5.2. Static and Nearly Harmonic Musical Instrument Sounds

For all musical instrument sound databases used (see Section 4.3), we selected a subset Ŝ
played with non-time-varying articulations such as ordinario and non-vibrato as the most appro-
priate to orchestrate static reference sounds. Appendix A contains tables that show the size of
the subspace Ŝ r for each reference, the total number of possible combinations in Ŝ r with M play-
ers, and the total number of orchestrations returned by CAMO-AIS per reference sound, which
is the number of local optima found. SOL appears in Table A.3, RWC appears in Table A.4,
Philharmonia appears in Table A.5, and Iowa appears in Table A.6.

5.3. Parameters of the Experiment

Table 1 lists the parameters of the experiment for the orchestration methods CAMO-AIS,
CAMO-GA, and Orchids as well as for the sound analysis [35]. We used the presets in Orchids
and in our previous work [26, 20] for CAMO-AIS. Whenever possible, we use the same pa-
rameter value for CAMO-AIS, CAMO-GA, and Orchids, such as the number of players M, the
maximum number of partials K, and the maximum number of iterations because these parame-
ters can potentially impact the result. M and K directly affect the spectrum of the combination
because fewer partials result in lower similarity, while fewer players would have a detrimental ef-
fect as well. The number of iterations must be large enough to guarantee convergence, otherwise
the similarity of the result might also be affected.
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5.4. Evaluation of Diversity

Given a reference sound and an orchestration method, the evaluation of perceptual diversity
requires determining if each orchestration is perceptually different from the others. Each set of 8
orchestrations requires 28 pairwise comparisons. A total of 13 reference sounds and 3 methods
would require 1092 pairwise evaluations. So we opted for an objective evaluation of diversity
instead.

We can evaluate objective diversity in 2 spaces shown in Fig. 2, the search space and the
feature space. In the search space, diversity translates as unique combinations. In the feature
space, the positions of sounds reflect perceptual relations among them. So diversity in the fea-
ture space can be associated with diversity along the perceptual dimensions associated with the
features used. We use the distribution of the orchestrations in the feature space to estimate the
diversity of the orchestration set. We propose to use the variance of the positions in the feature
space as measure of objective diversity.

Orchids is the only CAMO algorithm that operates in the objective space. The calculation
of the objective measure of diversity in the objective space requires the final weights α and
distances D. However, Orchids does not allow access to either α or D to calculate the diversity
in the objective space. Therefore, it is not possible to calculate diversity in the objective space
for any of the CAMO algorithms tested.

5.4.1. Objective Diversity in the Search Space
The orchestrations are represented in the search space as illustrated in Figure 4b. In general,

we expect different combinations of sounds to result in different orchestrations. However, we
need to differentiate between a pair of orchestrations with M − 1 identical sounds and 1 different
sound and another pair of orchestrations where all M = 5 sounds are unique. So we propose to
measure the difference ε in the combinations by simply counting the number of different sounds
in each pair of orchestrations and dividing by the maximum number of players, written formally
as

ε (c1, c2) =
1
M

card (c1 − c2) , (17)

where c1 and c2 are combinations, c1−c2 is the set difference between c1 and c2, “card” is the set
cardinality operator, and M is the maximum number of players. The cardinality of a set card (c)
is the number of elements in c and c1 − c2 = {s | ∈ c1 and s < c2} is the elements s in c1 that are
not in c2.

Figure 7a illustrates the difference between two sets c1 and c2 with a Venn diagram. Figure 7a
shows that the difference of two sets is a disjoint set because c1 = (c1 − c2) ∪ (c1 ∩ c2) and
c2 = (c2 − c1) ∪ (c1 ∩ c2), so (c1 − c2) ∩ (c2 − c1) = ∅.

Consequently, the difference operator is not commutative because c1−c2 , c2−c1. Therefore,
ε (c1, c2) = ε (c2, c1) only when card (c1) = card (c2) because only then the number of remaining
elements is the same. In other words, ε (c1, c2) = ε (c2, c1) only when the orchestrations c1 and
c2 being compared have the same number of players M. However, the orchestrations typically
have between M = 1 and M = 5 players. Figure 7b illustrates the measure of diversity for
orchestrations c1, c2, and c3 with different numbers of players. Note that ε (c1, c2) = 2/5 but
ε (c2, c1) = 0. Also from Figure 7b, ε (c1, c3) = 4/5 but ε (c3, c1) = (c1, c2) = 2/5. This is
called raw diversity, as opposed to the completed diversity shown in Figure 7c, which replaces
missing players with 0 standing for no instrument allocated to player m. Figure 7c shows that
now ε (c1, c2) = ε (c2, c1) = 2/5 and ε (c1, c3) = ε (c3, c1) = 4/5.
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Figure 7: Diversity in the search space. (a) illustrates the difference between two sets c1 and c2. (b) illustrates the raw
diversity measure. (c) illustrates the completed diversity measure.

The final measure of diversity for each orchestration cq is

ε̄
(
cq

)
=

1
Q − 1

Q∑
u=1

ε
(
cq, cu

)
, (18)

which is simply the mean value of eq.(17) between cq and every other orchestration Q−1. Finally,
for each reference sound, we have

ε̂ (r) =
1
Q

Q∑
q=1

ε̄
(
cq

)
, (19)

which is the mean of the individual diversity for each orchestration cq.
Different sound (or instrument) combinations do not necessarily correspond to perceptually

different orchestrations. Oftentimes, sounds considered different are, in fact, a different playing
style or articulation of the same note for the same instrument. The features used capture dimen-
sions of sound perception such that diversity in the feature space should be a better indicator of
perceptual diversity.

5.4.2. Objective Diversity in the Feature Space
The diversity of the orchestrations in feature space is proportional to the variance of their

distribution in feature space. Thus we measure diversity in the feature space with an objective
measure that captures the variance of the orchestrations in the same reduced feature space as the
affinity is calculated. We propose to use principal component analysis (PCA) to indirectly esti-
mate the variance of the orchestrations. The measure uses how much of the variance is captured
by the first principal component, as shown in Figure 8. Fig. 8a illustrates the case of maxi-
mum variance where the first principal component explains approximately 50 % of the variance
whereas Fig. 8b illustrates the case of minimum variance where the first principal component
explains 100 % of the variance. The measure of diversity ε is given by

ε =
J (1 − E)

J − 1
, with E ∈

[
1
J
, 1

]
and ε ∈ [0, 1] , (20)

where E is the percentage of variation explained by the first principal component, and J is the
number of dimensions of the reduced feature space. The dimensionality J of the original space
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Figure 8: Variance of distributions. (a) illustrates maximum variance. (b) illustrates minimum variance.

imposes a theoretical limit to the minimum of E given by 1/J as specified in eq. (20). For the
example in Fig. 8a, the maximum variance explained by the first principal component is 50%
because J = 2. Note that ε = 0 when E = 1 and ε = 1 when E = 1/J. In other words, min-
imum diversity corresponds to PCA explaining 100 % of the variation and maximum diversity
corresponds to PCA explaining 100

J % of variation.

5.5. Evaluation of Similarity

The fitness values from CAMO-GA and CAMO-AIS can be used as the objective measure
of similarity. However, we cannot compare with Orchids because the application does not give
access to to either α or D of the orchestrations returned. Therefore we performed a listening test
to evaluate the perceptual similarity of the orchestrations compared to the reference sound for
CAMO-AIS and Orchids. CAMO-GA was not included in the listening test because it uses the
same fitness function as CAMO-AIS.

5.5.1. Objective Similarity
Objective similarity is measured with the fitness value from eq. (2). Fitness represents the

distance to the reference sound r such that smaller values of F correspond to orchestration that
are closer to the reference.

5.5.2. Perceptual Similarity
We designed and conducted an online listening test to evaluate the perceptual similarity of

orchestrations to a number of preselected reference sounds. In total, 47 listeners (mean age:
33.7, age range: 19 − 60) participated in the listening test, all of which reported practicing a
musical instrument, professional experience of audio processing, familiarity with a listening test
procedure and listening to the stimuli with the use of high-quality headphones. All participants
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Figure 9: Raw diversity of sounds for all Q = 8 orchestrations found for each reference sound using the following sound
databases: SOL, RWC, Philharmonia, and Iowa. The labels stand for the following reference sounds: AH (air horn), CH
(car horn), C (carnatic), CT (choir tibetan), D (didgeridoo), FS (factory siren), G (glass), M (minimoog), MS (musical
saw), P (purr), SW (scream woman), W (waterphone), WH (windharp).

provided informed consent, were free to withdraw at any point and were naive about the purpose
of the test. The listening test can be found at http://camo.inesctec.pt.

Each participant evaluated the similarity of 7 reference sounds selected at random from the
total pool of 13 references. See section 5.1 for a description of the reference sounds. Each page
of the test presented one reference on top followed by the 16 orchestrations, 8 from CAMO-AIS
and 8 from Orchids. The presentation order of both the 7 reference sounds and the 16 orches-
trations in each page of the test was randomized (uniform distribution). In total, each reference
was evaluated by at least 19 participants. Participants rated similarity between sounds using slid-
ers with endpoints labeled very dissimilar and very similar respectively that corresponded to a
hidden scale ranging between 0 and a 100.

6. Results

Section 6.1 presents the results for diversity, with diversity in the search space in Section 6.1.1
and diversity in the feature space in Section 6.1.2. Then, Section 6.2 presents the results for
similarity, with objective similarity in Section 6.2.1 and perceptual similarity in Section 6.2.2. All
the data resulting from the experiment is available at https://doi.org/10.5281/zenodo.
2533264.

6.1. Diversity
6.1.1. Diversity in the Search Space

Diversity in the search space is estimated with eq. (19) for different sounds and different in-
struments. Figure 9 compares the raw diversity of sounds and Figure 10 compares the completed
diversity for the orchestrations returned by CAMO-AIS, CAMO-GA, and Orchids. The bars rep-
resent the average values of ε̂ (r) and the whiskers are the standard deviation of ε̂ (r) around the
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Figure 10: Completed diversity of sounds for all Q = 8 orchestrations found for each reference sound using the following
sound databases: SOL, RWC, Philharmonia, and Iowa. The labels stand for the following reference sounds: AH (air
horn), CH (car horn), C (carnatic), CT (choir tibetan), D (didgeridoo), FS (factory siren), G (glass), M (minimoog), MS
(musical saw), P (purr), SW (scream woman), W (waterphone), WH (windharp).

mean. The mean and standard deviation are summary statistics used as a visual aid to simplify
the comparison. Similarly, Figure 11 compares the raw diversity of musical instruments and
Figure 12 compares the completed diversity of musical instruments.

Figures 9 and Figure 10 show that CAMO-AIS presented higher diversity of sounds than
CAMO-GA or Orchids for all reference sounds using all databases. With SOL, CAMO-GA and
Orchids present a similar diversity.

Figure 11 and Figure 12 show that CAMO-AIS presented higher diversity of instruments
than CAMO-GA or Orchids for all references with RWC, Philharmonia, and Iowa. With SOL,
Orchids has a higher average diversity for 5 of the 13 references with overlapping standard devi-
ations.

There is no notable difference between raw and completed diversity for CAMO-AIS or
CAMO-GA, revealing that most orchestrations returned sounds allocated to M = 5 players.
However, for Orchids, the completed diversity tightens the standard deviation around the mean,
which is also raised in some cases. For example, AH, D, FS, and P in Figure 9 and Figure 10.
The same trend appears in Figure 11 and Figure 12. A higher completed diversity for Orchids is
indication that several orchestrations found had fewer sounds (or instruments) than the maximum
of M = 5.

6.1.2. Diversity in the Feature Space
Diversity in the feature space is measured with ε from eq. (20). The property of maintenance

of diversity of opt-aiNet means that CAMO-AIS returns multiple solutions corresponding to
different local optima. The suppression operation in CAMO-AIS eliminates solutions that are
close together in the feature space (see Section 3.1). CAMO-GA optimizes the same fitness
function as CAMO-AIS with a standard GA. Most individuals tend to the same local optimum
when the standard GA converges, resulting in individuals that are closer together. Finally, the
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Figure 11: Raw diversity of instruments for all Q = 8 orchestrations found for each reference sound using the following
sound databases: SOL, RWC, Philharmonia, and Iowa. The labels stand for the following reference sounds: AH (air
horn), CH (car horn), C (carnatic), CT (choir tibetan), D (didgeridoo), FS (factory siren), G (glass), M (minimoog), MS
(musical saw), P (purr), SW (scream woman), W (waterphone), WH (windharp).

MOGLS algorithm behind Orchids operates in the objective space, approximating the Pareto
frontier.

Figure 13 shows a comparison of ε for the Q = 8 orchestrations generated by CAMO-AIS,
CAMO-GA, and Orchids for all reference sounds using the sound databases SOL, RWC, Philhar-
monia, and Iowa. For SOL, CAMO-AIS resulted in higher ε than Orchids for most references,
except W (waterphone). However, CAMO-GA resulted in higher ε than CAMO-AIS for about
half the references with SOL. Diversity in the feature space was not consistent across databases
for RWC, Philharmonia, or Iowa. CAMO-AIS has higher ε than CAMO-GA for most references
using Philharmonia, whereas CAMO-GA has higher ε than CAMO-AIS for most references for
Iowa. Neither achieved higher ε for most references using RWC.

6.2. Similarity
6.2.1. Objective Similarity

The fitness value F can be used as measure of objective similarity for both CAMO-GA and
CAMO-AIS. F measures the distance between each orchestration cq (where q is the index of the
orchestration) and the reference sound r that cq approximates. Therefore, F reflects the proximity
of cq to r such that a lower F tells the composer that c1 is closer to r than c2, for example. The
calculation of the measure of objective similarity for Orchids requires the final weights α and
the distances D. However, Orchids does not allow access to either α or D. Therefore, we have
performed a listening test to compare the perceptual similarity between CAMO-AIS and Orchids.
Section 6.2.2 presents the results of the listening test.

Figure 14 shows the fitness values for all Q = 8 orchestrations returned by CAMO-AIS (top)
and CAMO-GA (bottom) for each reference sound using the four musical instrument sound
databases, namely SOL, RWC, Philharmonia, and Iowa. These results show that the fitness val-
ues for CAMO-GA and CAMO-AIS have a very similar pattern for each sound database because
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Figure 12: Completed diversity of instruments for all Q = 8 orchestrations found for each reference sound using the fol-
lowing sound databases: SOL, RWC, Philharmonia, and Iowa. The labels stand for the following reference sounds: AH
(air horn), CH (car horn), C (carnatic), CT (choir tibetan), D (didgeridoo), FS (factory siren), G (glass), M (minimoog),
MS (musical saw), P (purr), SW (scream woman), W (waterphone), WH (windharp).

both optimize the same fitness function F. Comparison of the fitness of CAMO-AIS and CAMO-
GA in each figure reveals similar relative values for the same reference sounds independently of
the CAMO algorithm. For example, the fitness of P (purr) for CAMO-AIS and CAMO-GA are
both around 0.3 using SOL, 0.2 using RWC and Philharmonia, and 0.5 using Iowa. However,
comparison of the fitness of one CAMO algorithm for the same reference sound across databases
reveals variation. For example, the fitness of P (purr) for CAMO-AIS varies between 0.2 and
0.5 depending on the database used. Taken together, these results show that the fitness values
depend on the database used but not on the CAMO algorithm.

6.2.2. Perceptual Similarity
CAMO-AIS resulted in more diversity than CAMO-GA and Orchids in general. So we in-

vestigated whether the increased diversity of the orchestrations affected the perceptual similarity
with the reference. The listening test compared the perceptual similarity of the orchestrations
from CAMO-AIS and Orchids. CAMO-GA was not included in the comparison because the
listening test would become prohibitively long to perform, leading the participants to fatigue.

We averaged the similarity ratings of the participants between each orchestration and the
corresponding reference prior to analysis. Then we calculated the value of Cronbach’s alpha
to test the internal consistency of the ratings among participants (i.e., to test whether there is
agreement among participants about the similarities). The value of Cronbach’s alpha obtained
for most references was higher than 0.8, indicating good agreement. The only exceptions were
for references carnatic, factory siren, and scream woman, for which agreement was weak.

Figure 15 presents a comparison of the boxplots of the mean dissimilarities for the orchestra-
tions of the two methods for each of the 13 reference sounds. Each box is bounded by the 0.25
percentile at the bottom and 0.75 percentile at the top. The median is indicated by a horizontal
line and the whiskers show the entire range of ratings, except for the points considered outliers
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Figure 13: Diversity in feature space for all Q = 8 orchestrations found for each reference sound using the following
sound databases: SOL, RWC, Philharmonia, and Iowa. The labels stand for the following reference sounds: AH (air
horn), CH (car horn), C (carnatic), CT (choir tibetan), D (didgeridoo), FS (factory siren), G (glass), M (minimoog), MS
(musical saw), P (purr), SW (scream woman), W (waterphone), WH (windharp).

represented by dots. We applied the Shapiro-Wilk normality test to the mean dissimilarity ratings
of all orchestrations for both methods to test if their distributions can be approximated by a nor-
mal (Gaussian) distribution. Several orchestrations from both methods failed to pass the test (at
significance level, p = 0.05). In addition, a Levene’s test between all 13 pairs of orchestrations
showed that pairs 1, 4, 5 and 13 did not have equal variance (at p = 0.05 level). Therefore, we
employed the non-parametric Wilcoxon signed-rank test, which does not assume data normality,
to examine whether differences between the medians of the distributions presented in Figure 15
are statistically significant.

Table 2 presents the results of the Wilcoxon signed-rank test which indicated that a statisti-
cally significant difference between median dissimilarities appears in 3 out of the 13 reference
sounds, highlighted in bold in Table 2. CAMO-AIS presented a higher overall similarity (i.e.,
higher median) compared to Orchids for musical saw and purr, whereas Orchids presented a
higher overall similarity for waterphone. All the other reference sounds did not feature a sig-
nificant difference in overall similarity between CAMO-AIS and Orchids, indicating that both
methods generate orchestrations that were considered as perceptually similar for these refer-
ences. Therefore, the results of the listening test show that CAMO-AIS returns orchestrations
that are perceived as similar to the reference as those by Orchids. Taken together, the results of
the diversity and similarity analyses support the conclusion that CAMO-AIS has higher diversity
of orchestrations than Orchids without loss of perceptual similarity.

7. Discussion

While our analysis demonstrates that CAMO-AIS is capable of generating multiple orches-
trations that are similar to the reference sound with diversity, it is also important to consider the
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Figure 14: Fitness values of CAMO-AIS (top panel) and CAMO-GA (bottom panel) for all Q = 8 orchestrations found
for each reference sound using the following sound databases: SOL, RWC, Philharmonia, and Iowa. The labels stand
for the following reference sounds: AH (air horn), CH (car horn), C (carnatic), CT (choir tibetan), D (didgeridoo),
FS (factory siren), G (glass), M (minimoog), MS (musical saw), P (purr), SW (scream woman), W (waterphone), WH
(windharp).

inherent temporal aspect of sound perception. We used the average of the feature values across
the duration of the sounds, not taking the temporal variations of these features into consideration.
Therefore, this work was restricted to static orchestrations, which are not suitable for reference
sounds that present temporal variation. Reference sounds with a high degree of temporal vari-
ation require a fitness function that encodes temporal variations of the features. Additionally,
reference sounds with temporal variation are expected to pose a greater challenge to orchestrate
using static notes of musical instrument sounds. However, most musical instruments from an
orchestra can be played with temporal variations, such as glissando or vibrato. Thus it seems
natural to use reference sounds that vary in time and to make future effort to orchestrate refer-
ences with inherent temporal variation.

In particular, the attack time is not included among the features used to match the references.
However, the attack time is the most salient feature in dissimilarity studies and should be con-
sidered when searching for orchestrations, especially when orchestrating percussive reference
sounds such as a gong. Naturally, orchestrating percussive references with percussive musical
instrument sounds such as piano notes of plucked violin strings should give better results and
should definitely be pursued in the future.

The perceptual similarity between the orchestrations and the references depends not only
on the features used but also on the different weights given to each feature. This is probably
the major difference between CAMO-AIS and Orchids in this work. CAMO-AIS uses a single-
objective approach with fixed weights whereas Orchids uses a multi-objective approach where
each solution corresponds to a different set of weights. Combinations with a good match of
partials with the reference are perceived as having similar pitch, especially when the f0 is close.
Thus the fitness function in this work emphasizes the match of the partials ~A more than the other
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Figure 15: Perceptual similarity of the Orchestrations for each of the 13 reference sounds for both CAMO-AIS and
Orchids.

features used. However, CAMO-AIS generated orchestrations with larger dissimilarities in pitch
than those generated by Orchids in general. Therefore, a different similarity measure for ~A might
improve the perceptual match for pitch.

The experiments were performed with a fixed set of weights for CAMO-AIS (and CAMO-
GA), so naturally the results and conclusions are restricted to the experimental conditions of
this work. Other combinations of weights should be tested and compared to extrapolate these
results. However, the experimental procedure adopted in this work must be adapted to test other
combinations of weights because of the costly listening test. The same applies for the parameters
of the algorithms. We used default parameter values for both opt-aiNet and Orchids under the
assumption that they are appropriate for the problem at hand. Once again, a parameter tuning
experiment would require a prohibitively costly listening test to fine-tune the parameters to obtain
maximal perceptual similarity.

In music, timbre is traditionally associated with the musical instrument producing the sound.
Combinations of different instruments typically result in complex timbral blends. In general,
Orchids resulted in orchestrations closer in pitch than CAMO-AIS but with less diversity mea-
sured both in the search space (i.e., combinations) and in the feature space. Most orchestrations
returned by Orchids had fewer players than M = 5 and repeated sounds. In some cases, Orchids
returned groups of orchestrations with the same instruments except for one. Most orchestrations
for CAMO-AIS allocated instruments to all M = 5 players, resulting in more complex instrumen-
tal combinations, which, in turn, render more complex timbral blends. Therefore, the perceptual
diversity for CAMO should rely heavily on timbre.

The measure of objective diversity in the search space developed for this work is based on
fundamental concepts of set theory. One of the consequences is the different values of raw
diversity and completed diversity used in the evaluation. Raw diversity uses the combinations
returned by CAMO-AIS and Orchids directly, while completed diversity corresponds to filling
with 0 the blank spaces left whenever no instrument is allocated to a player. We decided to
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Table 2: Results of the Wilcoxon signed-rank test of the mean dissimilarities between CAMO-AIS and Orchids for the 13
reference sounds. Bold p values (≤ .05) indicate a statistically significant difference between the mean ranks of the two
groups. The last column shows the actual difference between medians where a positive number indicates CAMO-AIS >
Orchids and vice versa.

Reference T z p value Median difference

air horn 22 0.6 0.57 -1.5

car horn 27 1.3 0.21 6.7

carnatic 10 -1.1 0.26 -2.9

choir tibetan 26 1.1 0.26 9.3

didgeridoo 8.5 -1.3 0.18 -12.1

factory siren 16 -.3 0.78 -2.0

glass 24 0.8 0.40 7.6

minimoog 20 0.3 0.78 0.2

musical saw 36 2.5 0.01 7.7

purr 36 2.5 0.01 29.4

scream woman 12 -0.8 0.40 -1.6

waterphone 1 -2.4 0.02 -12.8

wind harp 30 1.7 0.09 11.2

include both the raw diversity and the completed diversity in the evaluation because these provide
different perspectives for comparison.

Another consequence of the set-theory-based measure of diversity is the dependence of di-
versity values on the total number of elements available rather than their proportions. Use of this
measure results in lower diversity for instruments than sounds, ignoring the intrinsic connection
between the two since each instrument is capable of producing several sounds. A lower diversity
value for musical instruments than for musical instrument sounds simply reflects this property of
the measure. Thus the only reliable comparison is always between methods with everything else
fixed. For example, raw diversity of instruments for CAMO and Orchids is comparable.

8. Conclusions and Future Perspectives

Computer-Aided Musical Orchestration (CAMO) methods can help composers find combi-
nations of musical instrument sounds that approximate a reference sound when played together.
Composers usually have subjective criteria other than only similarity with the reference when
searching for an orchestration [7]. Therefore, CAMO methods that return multiple orchestrations
in parallel provide alternatives for the composer. Diversity of orchestrations is very important
to provide aesthetic options. In this work, we proposed CAMO-AIS, which uses a multi-modal
artificial immune system (AIS) called opt-aiNet to search for orchestrations. The characteristic
of maintenance of diversity of opt-aiNet resulted in multiple orchestrations that are considered
similar to the reference but that are different among themselves.

We generated 8 orchestrations for 13 reference sounds with CAMO-AIS, with CAMO-GA
using a standard genetic algorithm (GA), and with the state-of-the-art system Orchids and com-
pared the results in terms of diversity and similarity. We used several measures of diversity
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in the search space (of the combinations) and in the feature space to evaluate diversity and we
conducted a listening test to evaluate the perceptual similarity of the orchestrations. CAMO-
AIS resulted in higher diversity in the search space than both CAMO-GA and Orchids for most
references. CAMO-AIS was more diverse than Orchids in the search space for most reference
sounds tested. The results of the listening test did not show a statistically significant difference
in similarity between CAMO-AIS and Orchids for most references used. Overall, CAMO-AIS
generated orchestrations that were considered just as perceptually similar to the references used
as those generated by Orchids but with higher diversity. Thus, CAMO-AIS provides more op-
tions for the composer without loss of perceptual similarity. So the diversity from CAMO-AIS
does not sacrifice the similarity with the reference sound.

This work uses the original opt-aiNet in a proof-of-concept implementation of CAMO-AIS.
A natural next step toward future developments of CAMO-AIS is the application of improved
versions of opt-aiNet [36, 37, 38] published recently. These publications feature algorithmic
improvements over the original opt-aiNet targeting specific optimization domains. Continuous
optimization [36] would require adaptation to the discrete and combinatorial nature of the repre-
sentation adopted in CAMO, thus it seems more appropriate to directly use the combinatorial op-
timization version [38]. However, these algorithms [36, 37] were developed for single-objective
optimization (SOO) problems. An interesting alternative would be to approach CAMO as a
multi-objective optimization (MOO) and use the appropriate AIS [38], following the approach
used by Orchids. Alternatively, other optimization algorithms that return multiple local optima
such as brain storm optimization [39] or the quantum-inspired immune clonal algorithm [40]
can also result in orchestrations with diversity. Finally, multimodal deep learning [41] has the
potential to tackle the multidimensional nature of timbre in CAMO. However, the challenge of
attaining diversity of orchestrations would be added to the well known difficulty of interpretabil-
ity of deep learning.

The application of more sophisticated measures of objective diversity in future work has
potential to improve further CAMO-AIS. For example, the measure of diversity in the search
space developed for this work uses concepts from set theory rather than statistics, as is the tra-
dition in population biology. A natural source of inspiration is swarm and evolutionary com-
putation [42, 43, 44], especially multi-objective optimization [45, 46, 47], where the concept of
diversity has been extensively studied. An appropriate measure of diversity could be used in the
affinity calculation to maximize diversity of the combinations directly.

Finally, perceptual diversity lies at the core of CAMO. The perceptual evaluation of diversity
still poses a challenge due to the combinatorial nature of the task. In addition, the assumption
that orchestrations that are more similar to the reference sound are aesthetically more appropriate
could also be investigated.
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Appendix A. Additional information about CAMO-AIS

The following tables show the size of the subspace Ŝ r for each reference, the total number
of possible combinations in Ŝ r with M players, and the total number of orchestrations returned
by CAMO-AIS per reference sound, which is the number of local optima found, for the four
musical instrument sound databases used.
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Table A.3: Size of the subspace Ŝ r , total number of possible combinations in Ŝ r with M = 5 players, and the total
number of orchestrations found for each reference sound for SOL.

Reference Subspace Total Combinations Orchestrations

air horn 3871 7.22e+15 106

car horn 2205 4.32e+14 104

carnatic 4056 9.13e+15 10

choir tibetan 2656 1.10e+15 94

didgeridoo 1632 9.59e+13 62

factory siren 662 1.04e+12 23

glass 461 1.70e+11 127

minimoog 3989 8.40e+15 93

musical saw 218 3.92e+09 9

purr 2895 1.69e+15 61

scream woman 211 3.32e+09 23

waterphone 265 1.05e+10 17

wind harp 3475 4.21e+15 105

Table A.4: Size of the subspace Ŝ r , total number of possible combinations in Ŝ r with M = 5 players, and the total
number of orchestrations found for each reference sound for RWC.

Reference Subspace Total Combinations Orchestrations

air horn 9784 7.46e+17 169

car horn 3663 5.48e+15 180

carnatic 9117 5.24e+17 190

choir tibetan 6142 7.27e+16 124

didgeridoo 4812 2.15e+16 167

factory siren 2978 1.95e+15 132

glass 528 3.36e+11 64

minimoog 7597 2.11e+17 167

musical saw 454 1.57e+11 34

purr 6430 9.15e+16 135

scream woman 452 1.54e+11 98

waterphone 1895 2.03e+14 77

wind harp 6809 1.22e+17 167
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Table A.5: Size of the subspace Ŝ r , total number of possible combinations in Ŝ r with M = 5 players, and the total
number of orchestrations found for each reference sound for Phil.

Reference Subspace Total Combinations Orchestrations

air horn 3946 7.95e+15 132

car horn 1678 1.10e+14 127

carnatic 5131 2.96e+16 209

choir tibetan 3680 5.61e+15 175

didgeridoo 1806 1.59e+14 99

factory siren 1107 1.37e+13 107

glass 335 3.41e+10 141

minimoog 3740 6.08e+15 145

musical saw 189 1.91e+09 11

purr 5709 5.04e+16 131

scream woman 335 3.41e+10 54

waterphone 640 8.81e+11 25

wind harp 3570 4.82e+15 165

Table A.6: Size of the subspace Ŝ r , total number of possible combinations in Ŝ r with M = 5 players, and the total
number of orchestrations found for each reference sound for Iowa.

Reference Subspace Total Combinations Orchestrations

air horn 1045 1.03e+13 74

car horn 407 9.08e+10 69

carnatic 1067 1.14e+13 85

choir tibetan 721 1.60e+12 35

didgeridoo 386 6.96e+10 39

factory siren 304 2.09e+10 33

glass 65 8.26e+06 14

minimoog 926 5.61e+12 104

musical saw 50 2.12e+06 7

purr 565 4.71e+11 36

scream woman 64 7.62e+06 7

waterphone 113 1.40e+08 12

wind harp 861 3.90e+12 74
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