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Abstract. The aim of computer-aided musical orchestration is to find
a combination of musical instrument sounds that approximates a target
sound. The difficulty arises from the complexity of timbre perception
and the combinatorial explosion of all possible instrument mixtures. The
estimation of perceptual similarities between sounds requires a model
capable of capturing the multidimensional perception of timbre, among
other perceptual qualities of sounds. In this work, we use an artificial
immune system (AIS) called opt-aiNet to search for combinations of
musical instrument sounds that minimize the distance to a target sound
encoded in a fitness function. Opt-aiNet is capable of finding multi-
ple solutions in parallel while preserving diversity, proposing alternative
orchestrations for the same target sound that are different among them-
selves. We performed a listening test to evaluate the subjective similarity
and diversity of the orchestrations.

1 Introduction

Orchestration refers to composing music for an orchestra [12]. Initially, orches-
tration was simply the assignment of instruments to pre-composed parts of the
score, which was dictated largely by availability of resources, such as what instru-
ments there are and how many of them [10,12]. Later on, composers started
regarding orchestration as an integral part of the compositional process whereby
the musical ideas themselves are expressed [18]. Compositional experimentation
in orchestration arises from the increasing tendency to specify instrument com-
binations to achieve desired effects, resulting in the contemporary use of timbral
combinations [15,18]. The development of computational tools that aid the com-
poser in exploring the virtually infinite possibilities resulting from the combina-
tions of musical instruments gave rise to computer-aided musical orchestration
(CAMO) [3–6,11,17,18]. Most of these tools rely on searching for combinations of
musical instrument sounds from pre-recorded datasets to approximate a given
target sound. Early works [11,17,18] resorted to spectral analysis followed by
subtractive spectral matching.

Psenicka [17] describes SPORCH (SPectral ORCHestration) as “a program
designed to analyze a recorded sound and output a list of instruments, pitches,
and dynamic levels that when played together create a sonority whose timbre
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and quality approximate that of the analyzed sound.” The method keeps a data-
base of spectral peaks estimated from either the steady state or the attack (for
nonpercussive and percussive sounds, respectively) of musical instrument sounds
organized according to pitch, dynamic level, and playing technique such as stac-
cato and vibrato. The algorithm iteratively subtracts the spectral peaks of the
best match from the target spectrum aiming to minimize the residual spectral
energy in the least squares sense. The iterative procedure requires little compu-
tational power, but the greedy algorithm restricts the exploration of the solution
space, often resulting in suboptimal solutions because it only fits the best match
per iteration. Hummel [11] approximates the spectral envelope of phonemes as a
combination of the spectral envelopes of musical instrument sounds. The method
also uses a greedy iterative spectral subtraction procedure. The spectral peaks
are not considered when computing the similarity between target and candidate
sounds, disregarding pitch among other perceptual qualities. Rose and Hetrik [18]
use singular value decomposition (SVD) to perform spectral decomposition and
spectral matching using a database of averaged DFTs of musical instrument
sounds containing different pitches, dynamic levels, and playing techniques. SVD
decomposes the target spectrum as a weighted sum of the instruments present in
the database, where the weights reflect the match. Besides the drawbacks from
the previous approaches, SVD can be computationally intensive even for rela-
tively small databases. Additionally, SVD sometimes returns combinations that
are unplayable such as multiple simultaneous notes on the same violin, requiring
an additional procedure to specify constraints on the database that reflect the
physical constraints of musical instruments and of the orchestra.

The concept of timbre lies at the core of musical orchestration. Yet, tim-
bre perception is still only partially understood [1,9,13,15,16]. The term tim-
bre encompasses auditory attributes, perceptual and musical issues, covering
perceptual parameters not accounted for by pitch, loudness, spatial position,
duration, among others [13,15]. Nowadays, timbre is regarded as both a multi-
dimensional set of sensory attributes that quantitatively characterize the ways
in which sounds are perceived to differ and the primary vehicle for sound source
recognition and identification [15]. McAdams and Bruno [15] wrote that “instru-
mental combinations can give rise to new timbres if the sounds are perceived as
blended, and timbre can play a role in creating and releasing musical tension.”
Consequently, the goal of CAMO is to find an instrument combination that best
approximates the target timbre rather than the target spectrum [19].

To overcome the drawbacks of subtractive spectral matching, Carpentier and
collaborators [3–6,19] search for a combination of musical instrument sounds
whose timbral features best match those of the target sound. This approach
requires a model of timbre perception to describe the timbre of isolated sounds,
a method to estimate the timbral result of an instrument combination, and
a measure of timbre similarity to compare the combinations and the target.
Multidimensional scaling (MDS) of perceptual dissimilarity ratings [1,9,13,16]
provides a set of auditory correlates of timbre perception that are widely used
to model timbre perception of isolated musical instrument sounds. MDS spaces
are obtained by equating distance measures to timbral (dis)similarity ratings.
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In metric MDS spaces, the distance measure directly allows timbral comparison.
Models of timbral combination [6,12] estimate these features for combinations
of musical instrument sounds.

Carpentier and collaborators [3–6,19] consider the search for combinations
of musical instrument sounds as a constrained combinatorial optimization prob-
lem [5]. They formulate CAMO as a variation of the knapsack problem where
the aim is to find a combination of musical instruments that maximizes the
timbral similarity with the target constrained by the capacity of the orchestra
(i.e., the database). The binary allocation knapsack problem can be shown to be
NP-complete so it cannot be solved in polynomial time. They explore the vast
space of possible instrument combinations with a genetic algorithm (GA) that
optimizes a fitness function which encodes timbral similarity between the can-
didate instrument combinations and the target sound. GAs are metaheuristics
inspired by the Darwinian principle of survival of the fittest. The GA maintains a
list of individuals that represent the possible combinations of instruments. These
individuals evolve towards optimal solutions by means of crossover, mutation,
and selection. Crossover and mutation are responsible for introducing variations
in the current population and promoting the exploration and exploitation of the
search space. Selection guarantees that the fittest individuals are passed to the
next generation gradually converging to optimal regions of the search space. The
major drawback of this approach arises from the loss of diversity inherent in the
evolutionary search performed with GAs. In practice, the loss of diversity results
in only one solution that commonly corresponds to a local optimum because GAs
cannot guarantee to return the global optimum (i.e., the best solution). More-
over, running the GA multiple times with the same parameters commonly results
in different solutions. Carpentier et al. [5] use a combination of local search and
constraint strategies to circumvent the issues resulting from loss of diversity.

In this work, we use an artificial immune system (AIS) called opt-aiNet [7]
to search for multiple combinations of musical instrument sounds whose timbral
features match those of the target sound. Inspired by immunological principles,
opt-aiNet returns multiple good quality solutions in parallel while preserving
diversity. The intrinsic property of maintenance of diversity allows opt-aiNet to
return all the optima (global and local) of the fitness function being optimized
upon convergence, which translates as orchestrations that are all similar to the
target yet different from one another. The AIS provides the composer with mul-
tiple choices when orchestrating a sound instead of searching for one solution
constrained by choices defined a priori. Therefore, our work can expand the
creative possibilities of CAMO beyond what the composer initially imagined.

The remainder of this paper is organized as follows. The next section presents
an overview of our approach to CAMO. Then we describe the immunological
approach to CAMO. Next we present the experiment we performed followed by
the evaluation. The evaluation comprises similarity and diversity using objective
measures and the subjective ratings from a listening test. We present and discuss
the results, followed by conclusions and perspectives.
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2 Computer-Aided Musical Orchestration (CAMO)

2.1 Overview

Figure 1 shows an overview of our approach. The sound database is used to build
a feature database, which consists of acoustic features calculated for all sounds
prior to the search for orchestrations. The same features are calculated for the
target sound being orchestrated. The fitness function uses these features to esti-
mate the similarity between combinations of features from sounds in the data-
base and those of the target sound. The AIS is used to search for combinations
that approximate the target sound, called orchestrations. Each orchestration is
a list of sounds from the sound database, which contains sounds with various
lengths. A phase vocoder is used to time-stretch or compress each sound from
an orchestration to the average duration to ensure they all start and end at the
same time when played together. The graphic interface (GUI) displays informa-
tion about the solution set and allows the user to play the target sound and the
orchestrations.

Fig. 1. Overview of the modules that compose the developed orchestration system

2.2 Sound Database

The sound database used in this work contains musical instrument sounds from
the RWC Music Database [8] available to compose the orchestrations. In total,
there are 1439 sounds from 13 instruments played with 3 dynamics, forte, mezzo
forte and piano. The instruments are violin, viola, cello, contrabass, trumpet,
trombone, tuba, french horn, english horn, oboe, bassoon, clarinet, and flute. For
each file the values of the sound features described in the next section were
computed and stored.

2.3 Feature Database

Traditionally, timbre is considered as the set of attributes whereby a listener can
judge that two sounds are dissimilar using any criteria other than pitch, loudness,
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or duration [15]. Therefore, we consider pitch, loudness, and duration separately
from timbre dimensions. The features used are fundamental frequency f0 (pitch),
frequency and amplitude of the contribution spectral peaks P , loudness λ, spec-
tral centroid μ, and spectral spread σ. The spectral centroid μ captures bright-
ness while the spectral spread σ correlates with the third dimension of MDS
timbre spaces [1,9,13,16]. The RMS energy was also calculated for each sound
and the duration is equalized later with a phase vocoder. All musical instrument
sounds used are sustained (i.e., nonpercussive) with attack times longer than
250 ms and duration of 1 s or more. The calculation of the features is performed
for short-term frames between 250 ms and 750 ms and then averaged because the
signal is considered stable in that region.

Fundamental Frequency. The f0 of all sounds s (i) in the database is esti-
mated with Swipe [2].

Contribution Spectral Peaks. The spectral peaks considered are those whose
spectral energy (amplitude squared) is at most 35 dB below the maximum. They
are estimated with the MIR Toolbox [14] and stored as a vector with the pairs
{a (n) , f (n)} ∈ s (i). The spectral peaks a (n) are used to compute the contribu-
tion spectral peaks P (i, n), which are the spectral peaks from the selected sound
s (i) that are common to the spectral peaks of the target sound sT . Equation (1)
shows the calculation of P (i, n) as

P (i, n) =

{
ai (n) if (1 + δ)−1 ≤ f i (n) /fT (n) ≤ 1 + δ

0 otherwise
(1)

where ai (n) is the amplitude and f i (n) is the frequency of the main spectral peak
of the selected sound, and fT (n) is the frequency of the target sound. Figure 2
illustrates the computation of spectral peak similarity between the target sound
and a selected sound. Spectral peaks are represented as spikes with amplitude
a (n) at frequency f (n) where n is the index of the peak. The frequencies fT (n)
of the peaks of the target sound are used as reference. Whenever the selected
sound contains a peak in a region δ around fT (n), the amplitude ai (n) of
the peak at frequency f i (n) of the selected sound is kept at position n of the
contribution vector P (n). In this work δ = 0.025.

Loudness. Loudness λ (i) is calculated as

λ (i) = 20 log10

(∑
n

a (n)

)
, (2)

where a (n) are the amplitudes at frequencies f (n) and i is the sound index.
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Fig. 2. Construction of the contribution vector P (i, n). See text for explanation.

Spectral Centroid. The spectral centroid μ (i) is calculated as

μ (i) =
∑

n

f (n)
|a (n) |2∑
n |a (n) |2 . (3)

Spectral Spread. The spectral spread σ (i) is calculated as

σ (i) =
∑

n

(f (n) − μ)2
|a (n) |2∑
n |a (n) |2 . (4)

2.4 Pre-processing

Prior to the search for orchestrations of a given target sound sT , the entire sound
database S is reduced to a subset ST of sounds that will be effectively used to
compose orchestrations for sT . All the sounds whose contribution vector P (i, n)
is all zeros are eliminated because these do not have any contribution spectral
peaks. Similarly, all the sounds whose f0 is lower than fT

0 are eliminated because
any partials lower than fT

0 have a negative impact on the final result. Partials
that are higher than all PT (n) have a negligible effect and are not considered.

2.5 Representation

An orchestration is a list of sounds S (i) that, when played together, should
approximate the target sound sT . Thus orchestrations are represented as S (i) =



Computer-Aided Musical Orchestration 7

{s (1) , s (2) , . . . , s (i) , . . . , s (I)}, ∀s (i) ∈ ST . In practice, S (i) has I sounds,
and each sound s (i) corresponds to a note of a given instrument played with a
dynamic level. Zero indicates no instrument.

2.6 Combination Functions

The sounds s (i) in an orchestration S (i) should approximate the target sT when
played together. Therefore, the combination functions estimate the values of the
spectral features of S (i) from the features of the isolated sounds s (i) normalized
by the RMS energy e (i) [6]. The combination functions for the spectral centroid
μ (i), spectral spread σ (i), and loudness λ (i) are given respectively by

μ (S (i)) =
∑I

i e (i) μ (i)∑I
i e (i)

(5)

σ (S (i)) =

√√√√√√√√
I∑
i

e (i) (σ2 (i) + μ2 (i))

I∑
i

e (i)
− μ2 (S (i)) (6)

λ (S (i)) = 20 log10

(
I∑
i

1
N

∑
n

a (i, n)

)
(7)

The estimation of the contribution spectral peaks of the combination
P (S (i) , n) uses the contribution vectors P (i, n) of the sounds s (i) in S (i) as

P (S (i) , n) =
{

max
i∈I

[P (i, 1)] ,max
i∈I

[P (i, 2)] , · · · ,max
i∈I

[P (i,N)]
}

(8)

2.7 Fitness Function

The fitness value F (S (i)) of an orchestration S (i) is calculated as

F (S (i)) = −
∑

y

α (y)Dy (9)

where α (y) are the weights that establish the relative importance of the absolute
distances Dy. Each Dy, in turn, measures the difference between the features
from the target sound sT and the candidate orchestration S (i) as follows

Dμ =
|μ (S (i)) − μ

(
sT

) |
μ (sT )

(10)

Dσ =
|σ (S (i)) − σ

(
sT

) |
σ (sT )

(11)
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Dλ =
|λ (S (i)) − λ

(
sT

) |
λ (sT )

(12)

The use of Eqs. (10) and (11) is specially suited for CAMO problems as these
measures are more sensitive for lower frequencies, a fact that is desired consid-
ering human perception of sound. The distance between the contribution vector
of the target sound P

(
sT , n

)
and the contribution vector of the orchestration

P (S (i) , n) is calculated as

DP = 1 − cos(P (S (i) , n) , P
(
sT , n

)
). (13)

The weights used in this work are

α = {0.1, 0.1, 0.2, 0.6}. (14)

The aim of CAMO is to find S (i) that is close to sT . Thus we want to
minimize the distances Dy that comprise F . The negative sign in Eq. (9) makes
the fitness value of all combinations negative so maximizing F approaches zero
and minimizes the distance from sT . However, the fitness landscape of F (S (i))
depends on the combinations S (i) in ST , giving rise to a complex space which
requires an optimization method to find solutions.

3 Immune Inspired Musical Orchestration

The work of Carpentier et al. [3–6,19] represents a paradigm shift in CAMO.
Prior to their work, most approaches [11,17,18] used greedy search procedures
based on subtractive spectral matching. Their contribution is twofold, the use
of perceptually related features to measure timbral similarity and the use of
constrained combinatorial optimization to search for combinations of musical
instruments whose features approach those of the target sound. Timbral similar-
ity is encoded in a fitness function such that better combinations present higher
fitness values. The aim is to find combinations that correspond to maxima of the
fitness function as illustrated in Fig. 3. The surfaces represent the fitness func-
tion, which might have multiple peaks, and the black dots represent the fitness
values of specific instrument combinations. The combinatorial explosion result-
ing from the exhaustive search of all possible combinations requires heuristics to
find a solution in less time.

Carpentier et al. [3–6,19] use GAs to perform the search due to their abil-
ity to perform exploration and exploitation of the search space. Exploration is
responsible for looking for new promising regions of the search space (peaks of
the fitness function) and exploitation climbs the peaks looking to improve the
current candidate solutions. However, the standard GA suffers from loss of diver-
sity upon convergence, which results in only one solution corresponding to one
peak is returned by the GA as shown in Fig. 3a. The stochastic nature of the
search procedure does not guarantee that the global optimum is found, often
getting stuck in local optima. Additionally, running the GA multiple times with
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(a) Genetic Algorithm (GA)
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(b) Artificial Immune System (AIS)

Fig. 3. Multimodal function optimization. The figure illustrates a fitness function with
multiple optima. Part (a) shows that the GA finds only one optimum. Part (b) shows
the ability of the AIS to find all the optima of the fitness function.

the same parameters commonly results in different solutions corresponding to
different peaks of the fitness function.

We propose an immune inspired approach to CAMO instead. We use an arti-
ficial immune system (AIS) called opt-aiNet [7] to perform the search. Figure 3b
illustrates the ability of opt-aiNet to find all optima of the fitness function pre-
serving diversity. The ability to maintain diversity translates as solutions that
are different from one another.

3.1 Opt-aiNet: An Artificial Immune System for Optimization

Inspired by the natural immune system, De Castro and Timmis [7] developed
an artificial immune system (AIS) called opt-aiNet for multimodal optimization
problems, which typically present several possible solutions as optima of the
fitness function. Opt-aiNet uses the immunological principles of clonal expansion,
mutation and suppression to evolve a population of antibodies in an immune
network. Opt-aiNet combines local and global search to locate and maintain
multiple optima of the fitness function in parallel while preserving diversity of
the solutions. This means that opt-aiNet can find a set of good candidates for
the solution of the optimization problem that are different from one another.

Each network cell (antibody) is represented as a vector whose fitness is mea-
sured with a fitness function. Additionally, the similarity among antibodies is
called affinity, and a high affinity means that the antibodies are similar. Affinity
is measured with a distance metric such as the Euclidean distance. The anti-
bodies are initialized at random to explore the search space. Some high fitness
antibodies are selected and cloned based on their fitness value, the higher the
fitness, the higher the number of clones and vice-versa. The clones generated
suffer a mutation inversely proportional to their fitness and a number of high
fitness clones is maintained in the network as memory. Then, the affinity among
the remaining antibodies is determined. Maintenance of diversity is achieved by
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eliminating the antibodies whose affinity is lower than a given threshold from
the network while keeping the ones with the highest fitness. Finally, a number
of newly generated antibodies are incorporated into the network.

Discrete Search Space. Originally, opt-aiNet [7] was designed to optimize
functions of continuous variables, performing the search in continuous vector
spaces. In our work, the search space is discrete because the representation of
orchestrations S (i) is a vector of discrete indices i of sounds in the database.
Most of the operations of the continuous version of opt-aiNet work as originally
intended for discrete vectors as well. The exception is the original mutation
operator which used a continuous random variable to add a small perturbation to
the vectors being mutated. Thus we adapted the mutation operator for discrete
vectors using a probability of mutation to determine if the vector will undergo
mutation. The probability of mutation pm is calculated as

pm = exp(−γF̂ ) (15)

where γ is a constant and F̂ is the normalized fitness value of the combination
vector S (i) being mutated. For each index i, a uniform random variable u (0, 1)
will determine if the corresponding sound s (i) is replaced by another sound
from ST . If u (0, 1) < pm then a new i ∈ ST is chosen from another uniform
distribution. Here we set γ = 1.2. The suppression operation discards cells that
have affinity values below a given threshold. In this work, the affinity between
two antibodies is the distance between vectors whose components are calculated
using Eqs. (10)–(13).

3.2 Phase Vocoder

The orchestrations found by the AIS are created as combinations of the sounds
from the database, which have different temporal duration. The focus on tim-
bral similarity requires to equalize the other dimensions of sound perception,
including the duration of the sounds. The Phase Vocoder (PV)1 can manipulate
the pitch and duration independently, allowing to create combinations of sounds
from the database with the same duration while preserving the pitch and other
perceptual features.

3.3 Graphical Interface

Figure 4 shows the graphical interface (GUI) that displays the orchestrations
proposed by the AIS. The GUI allows to play the orchestrations and shows
the instruments comprised in them. The spectrum of the target sound and the
orchestrations can also be viewed.

1 http://labrosa.ee.columbia.edu/matlab/pvoc/.

http://labrosa.ee.columbia.edu/matlab/pvoc/
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Fig. 4. Graphical interface (GUI).

4 Evaluation

The aim of the evaluation was to investigate the similarity and diversity of the
orchestrations proposed by our system. The quality of a solution depends on
how similar it is to the target sound. We want all the solutions proposed by the
system to be as close to the target sound as possible. However, diversity is also
important. Multiple solutions should be different from one another to represent
alternatives, giving the user options to choose from. Therefore, we evaluate the
similarity and the diversity of the orchestrations proposed by the system and
compare them with an implementation of a genetic algorithm.

We performed subjective and objective evaluations for similarity and diver-
sity. The subjective evaluation consists of a listening test, and the objective
evaluation uses distance measures. For the listening test, we selected 10 target
sounds, listed in Table 1. These sounds were chosen according to two criteria,
temporal variation and harmonicity. Target sounds that have high temporal vari-
ation will tend to be more challenging to orchestrate because we use the average
value of the features. Similarly, target sounds that are less harmonic will be
more challenging to orchestrate with musical instrument sounds because all the
musical instruments in the database used to find orchestrations are very close to

Table 1. Target sounds used in the listening test. The table contains an informal
estimation of the degree of temporal variation (TempVar) and the degree of harmonicity
(Harm) of each target sound as low (L) or high (H).

Target Horn Synth Tbreed Ahh Harp Didger Eleph Frog Scream Gong

TempVar L L L L L L H H H H

Harm L H L H H H L L L L
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Fig. 5. Illustration of the listening test

harmonic. The listening test shown in Fig. 5 was run online2. The target sound
is marked as reference, and the orchestrations are test item. After playing the
sounds multiple times if necessary, the listeners were asked to assess the sub-
jective similarity between the reference and each test item using the following
scale: very different, different, fairly similar, similar, and very similar. Finally,
the listeners were asked to judge the overall diversity of the test items using the
same scale. In total, 23 people took the test.

The objective evaluation of similarity uses the fitness values of the solutions,
while the objective evaluation of diversity uses Eq. (16), which quantifies the
number of sounds in common between the orchestrations present in the set as:

div = 1 − k

I
, (16)

where k is the number of common sounds and I the total number of sounds
in an orchestration. This equation quantifies the objective diversity as a value
between 0 and 1, where 0 corresponds to minimum diversity and 1 corresponds
to maximum diversity.

5 Results and Discussion

5.1 Subjective Evaluation

The results obtained for the subjective evaluation are shown in Table 2. Sub-
jective similarity varies from 1 to 5 with higher values corresponding to
2 Access http://goo.gl/weHaHI to see the test and listen to the sounds.

http://goo.gl/weHaHI
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Table 2. Results of the subjective evaluation.

Target Similarity Diversity Target Similarity Diversity

Horn 2.6±0.6 3.4±0.9 Didger 2.1±0.3 3.7±1.1

Synth 1.8±0.3 3.9±1.1 Eleph 2.3±0.2 3.3±1.1

Tbreed 2.0±0.3 3.3±1.3 Frog 1.2±0.1 3.4±1.7

Ahh 2.2±0.5 3.6±1.1 Scream 2.7±0.2 2.7±1.2

Harp 2.3±0.2 3.3±1.0 Gong 2.3±0.3 3.4±1.0

orchestrations that are more similar to the target. The value 1 corresponds to
the option very different in the listening test and the value 5 corresponds to
the option very similar. Subjective diversity also varies from 1 to 5 with higher
values indicating a more diverse set of orchestrations. The value 1 corresponds
to the option very similar in the listening test and the value 5 corresponds to
the option very different.

Subjective Similarity. The target sound Scream received the highest score for
subjective similarity, followed by Horn. Table 1 indicates that Scream presents
high temporal variation and low harmonicity, while Horn presents both low tem-
poral variation and harmonicity. We expected sounds with high harmonicity and
low temporal variation such as Synth, Ahh, and Didger to render orchestrations
that would be considered more similar than the others because the sounds in
the database are stable notes from harmonic musical instruments.

The target sound Frog received the lowest score for subjective similarity.
The croaking of a frog is characterized mostly by the temporal modulations
than spectral features, thus we expected Frog to be a particularly challenging
target sound to orchestrate with sustained notes from musical instruments.

Subjective Diversity. Most subjective diversity scores were above 3 on aver-
age (with the exception of Scream), corresponding to assessments between Fairly
Similar and Different. This result is an indication that the AIS is capable of
returning multiple orchestrations in parallel that correspond to alternative com-
binations of sounds.

5.2 Objective Evaluation

The evaluation of objective similarity uses the fitness values of the orchestrations
while the evaluation of objective diversity uses Eq. (16). Table 3 shows the results
for the objective evaluation. Fitness is always negative and the closer to zero the
smaller the distance from the target. The objective diversity values vary from 0
to 1 and the higher they are the more diverse the set of orchestrations because
they have fewer sounds in common.
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Table 3. Objective evaluation. The table shows the fitness (Fit) and Diversity (Div)
for the artificial immune system (AIS) and genetic algorithm (GA).

Target Fit AIS (x10−3) Fit GA (x10−3) Div AIS Div GA

Horn −24.3±3.5 −31.7±3.6 0.78±0.16 0.82±0.20

Synth −14.8±3.4 −22.5±9.3 0.84±0.13 0.83±0.15

Tbreed −53.0±5.0 −66.8±5.8 0.82±0.15 0.79±0.16

Ahh −45.6±3.6 −54.0±3.9 0.84±0.14 0.78±0.17

Harp −23.9±4.9 −35.7±7.6 0.80±0.15 0.78±0.18

Didger −16.5±3.1 −18.5±1.8 0.64±0.16 0.62±0.18

Eleph −64.5±4.1 −74.3±7.4 0.86±0.13 0.80±0.17

Frog −154.3±7.8 −166.8±13.5 0.78±0.15 0.76±0.19

Scream −58.6±7.4 −55.0±4.2 0.85±0.14 0.64±0.16

Gong −50.3±5.8 −65.9±12.0 0.82±0.15 0.72±0.14

Objective Similarity. We compare the results obtained by the AIS opt-aiNet
with the results obtained using a standard GA. We ran the GA 10 times and
stored the fitness value of the best classified solution after each run. The results
shown in Table 3 are the average fitness values obtained in the 10 executions
of the GA and the average fitness values obtained in a single run of the AIS.
The AIS returns multiple solutions, so we averaged the values of the top 10
orchestrations ranked by fitness value. In general, Table 3 shows that the fit-
ness for the AIS is closer to zero than the fitness for the GA, indicating better
matches. However, the results of the objective similarity evaluation in Table 3
do not reflect the subjective similarity from Table 2. For example, the orches-
trations that have the best fitness values are Synth and Didger but these target
sounds were not considered to render the closest orchestrations. Therefore, the
perceptual significance of the fitness function remains to be investigated.

Objective Diversity. The objective diversity was computed using Eq. (16).
The diversity for the AIS was calculated from the top 10 ranked solutions from
a single run, while the diversity for the GA was calculated after 10 runs. Table 3
indicates that a single run of the AIS returns a set of orchestrations with objec-
tive diversity comparable with multiple runs of the GA.

6 Conclusions and Perspectives

We proposed to use an artificial immune system (AIS) to find combinations
of sounds from a database that approach a target sound. The AIS is capable of
finding multiple combinations that are good candidate solutions while preserving
diversity, contrary to the standard GA. We evaluated the objective and subjec-
tive similarity of the orchestrations returned by the AIS to 10 target sounds and
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compared the results with a standard GA. Similarly, we evaluated the objective
and subjective diversity of 10 solutions found by the AIS and compared with
10 independent runs of the GA. The orchestrations found by the AIS presented
similarity and diversity comparable to running the GA multiple times to obtain
different orchestrations.

We focused on spectral features of sounds, neglecting the inherent temporal
aspect of sound perception. The attack time is the most salient feature in dis-
similarity studies and should be considered when searching for orchestrations.
Orchestrating percussive sounds such as the Gong with sustained musical instru-
ments seems less intuitive than using percussive sounds such as piano notes or
plucked violin strings. The temporal evolution of the features was not considered
in this work. Sounds that vary in time are expected to pose a greater challenge to
orchestrate using notes of musical instrument sounds. Most musical instruments
from an orchestra can be played with temporal variations, such as glissando or
vibrato. Thus it seems natural to use target sounds that vary in time.

Future work should investigate how to incorporate time in the search for
orchestrations to find better combinations for target sounds that present tempo-
ral evolution. The attack time is an important feature to distinguish percussive
from sustained sounds. Target sounds with a high degree of temporal variation
such as the Elephant require a fitness function that encodes temporal variations
of the features. Finally, the assumption that orchestrations that are more similar
to the target sound are aesthetically better could be investigated.

The results obtained in this work were made available online in a dedicated
webpage3.
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